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In this paper a high accuracy position control strategy for a pneumatic actuation system
subjected to a varying external force is proposed. A novel approach for the mathemat-
ical modeling of the pneumatic actuator, based on energy methods, is presented. The
Lagrangian is derived from combining the kinetic and potential energies, leading to for-
mulation of the Euler-Lagrange equation of motion. The nonlinear backstepping method
is applied to derive the control law, and the derivative of the potential energy is used as
the controlled parameter. Experimental results show that tracking a sine wave of 0.1m
magnitude produces a maximum error of ±0.008m while the actuator is subjected to a
time varying external force with a magnitude ranging from 570N to 1150N.

Keywords: Pneumatic actuator, Euler-Lagrange equation of motion, nonlinear position
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1. Introduction

Pneumatic actuation systems have been a controversial subject for years in the
fields of automation and industrial control. The main advantages of pneumatic ac-
tuation systems, such as high power to weight ratio, cleanliness, low cost, reliability
and simplicity, have contributed to their widespread use, especially for implemen-
tation in automated production lines and industrial tools. On the other hand, the
compressibility of the working media (usually air) makes it difficult to accurately
predict their dynamic behavior. This disadvantage has limited the implementation
of pneumatic actuators to open-loop applications, where accurate motion is not re-
quired.

https://doi.org/10.2478/mme-2018-0091
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The first attempt to use a closed-loop controlled pneumatic system was published
by Shearer [1]. His work included a theoretical analysis of the pneumatic actuator
and the control valve. Based on a linearized dynamic model, he proposed a control
strategy that could stabilize the system at the equilibrium point. However, this con-
trol approach is valid only in the vicinity of the equilibrium point. Nevertheless, this
modeling methodology became the conventional modeling approach were the mass
flow-rate passing through the valve is integrated into the actuator’s dynamic model,
which is defined by Newton’s second law. Later studies improved Shearer’s work by
modeling the system with more details, i.e. considering more physical phenomena,
increasing the depth in which the phenomena are portrayed, and reevaluating the
simplifying assumptions. For example, the extensive dynamic model of Richer and
Hurmuzlu [2], which includes the effects of nonlinear flow through the valve and air
compressibility in the actuator’s chambers and also considers the leakage between
chambers, the end of stroke inactive volume, the time delay and attenuation in the
pneumatic lines.

Solution for the control problem of pneumatic systems can be achieved using
various methods, were the main control objectives are position and velocity tra-
cking. Preceding papers, such as [3–5], proposed classical control strategies that
were applied to a linearized dynamic model of the pneumatic system. In the last
two decades, we have witnessed growing interest in nonlinear control theory and the
implementation of nonlinear control techniques to pneumatics. The backstepping
methodology was proposed in [6] and [7], while other researchers, as reported in
[8–10] used the sliding mode control method. A combination of backstepping with
sliding mode was used in [11] and [12], while [13] described the design of an H-infinity
controller for an artificial pneumatic muscle.

In this paper we propose a new approach for the modeling and control of a pneu-
matic actuation system subjected to an external force. In Sec. 2, we derive the
actuator’s dynamic model based on the Lagrangian mechanics principles instead of
using the traditional force analysis. The modeling was performed as follows: first
we defined the kinetic energy and the potential energy, then we formulated the La-
grangian of the actuator and, finally, we developed the equation of motion of the
system. In Secs. 3 and 4 we apply the nonlinear backstepping method, by using the
derivative of the potential energy as the controlled parameter, to track a reference
position trajectory. In the following section we also mathematically prove that the
controlled system is asymptotically stable. Further, in Sec. 5, we analyze of the
dynamic model by simulation. Finally, in Sec. 6 we demonstrate the performance
of our new approach by implementing the control law in an experiment setup, in
which the actuator is disturbed by a varying external force.

2. The Dynamic Model

The pneumatic actuation system (Fig. 1) is composed of five basic elements: an ac-
tuator, a control valve, a pneumatic source of compressed air, measuring equipment
((a) measures the travel distance and (b) are two pressure sensors) and a micro-
controller for computation and data acquisition.

The pneumatic actuator transforms pneumatic energy to mechanical energy. It
comprises a cylinder, a piston which separates the inner volume into two chambers,
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Figure 1 Pneumatic actuation system scheme

and two ports at the ends of the cylinder that allow air charge or discharge from
the chambers. Changing the mass of air in the chamber changes the pressure, and
thus changes the net force acting on the piston, therefore causing movement of the
piston and the rod connected to it. Notations that describe the actuator are shown
in Fig. 2, where i = 1 corresponds to the left chamber and i = 2 to the right
chamber.

Figure 2 A schematic illustration of the pneumatic actuator

That is, ṁi is the inlet or outlet mass flow-rate through the port of chamber i,
Ai is the piston’s cross section area, Pi is the pressure, mi is the mass of air and
Vi is the volume. In addition, Fex is the external force, x is the position of the
piston, l is the piston’s stroke and M is the total mass of the piston, the rod and
the external mass. This model also includes a ’dead volume’, which is the remaining
volume when the piston reaches the end of its stroke. The two lower black triangles
at the ends of the cylinder indicate the ’dead volume’, while the two upper triangles
represent the inlet/outlet ports.

2.1. The Energy of the Actuator

In order to describe the dynamics of the actuator in terms of energy, we apply the
principles of Lagrangian mechanics. We introduce the Lagrangian of the actuator,
L, which is defined as the difference between the total kinetic energy, T , associated
with inertia and movement of masses and the total potential energy, V, associated
with the energy content of the substance and of its pressure and volume. Hence,

L = T − V. (1)

The kinetic energy of the actuator, T , is associated with the total mass of all
moving parts (piston, rod and external mass). The kinetic energy is defined such
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that

T =
1

2
Mẋ2, (2)

where M is the total moving mass and ẋ is the time derivative of the position x,
i.e., the velocity of the mass.

Pneumatic potential energy is the energy stored in pressurized compressible
fluids. In order to determine the potential energy of the actuator we need to define
the relation between the force and the generalized displacement. We adopt the
approach by which, in a pneumatic domain, the pressure is analogous to the force
and the volume is analogous to the displacement [14].
The relation between pressure and volume: We use the case of a sealed
cylinder with varying volume (Fig. 3) to describe this relation.

Figure 3 Varying volume chamber and movable piston

The chamber is sealed by the cylinder walls and a movable piston. P , m and
V are the air pressure inside the chamber, the mass of air in the chamber and the
volume of the chamber, respectively. Assuming the air behaves as an ideal gas, the
relation between pressure and volume is defined by the ideal gas law:

PV = mRT , (3)

where R is the specific gas constant of air and T is the air temperature.
Potential energy of a varying volume chamber: We assume that the ther-
modynamic process is isothermal, i.e. the air temperature does not change. An
incremental amount of work done by the pressure is defined by

PdV =
mRT

V
dV , (4)

and the total work done by the pressure, W , is calculated by the integral

W = −
V∫

V0

PdV = −mRT ln

(
V

V0

)
, (5)

where V0 is the initial volume of the chamber. In fact, (5) is the potential energy
of the closed chamber.1

Potential energy of the actuator: The potential energy of the actuator, V, is
defined as the energy content of the mass of the substance (air) inside the actuators
chambers and its thermodynamic properties.

1The minus sign in (5) is a result of a sign convention by which mechanical work done by the
system on the surroundings is considered to be negative.
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Once we know the potential energy of a varying volume chamber we can model
the actuator as two connected chambers, divided by the piston, as shown in Fig. 4.
The potential energy of the actuator, V, is a function of the chambers’ volumes.
That is

V (V1, V2) = −RT
(
m1 ln

(
V1
V0,1

)
+m2 ln

(
V2
V0,2

))
, (6)

where mi , Vi and V0,i are the mass of air, the volume chamber i and its initial
volume, respectively. We define the initial volume as the ’dead volume’ of the
actuator. Since the ’dead volume’ is reported as equal for both chambers, it is
denoted in the rest of this paper by V0.

Figure 4 Closed container separated into two chambers by a piston

The geometric relation between the volumes and the pistons position is

V1 = A1x (7)

V2 = A2 (l − x) . (8)

Thus,

V(x) = −RT
(
m1 ln

(
A1x

V0

)
+m2 ln

(
A2 (l − x)

V0

))
. (9)

In a closed container the masses, m1 and m2, are constants, and thus the po-
tential energy is dependent only on the displacement of the piston, x. The real
actuator, on the other hand, is not sealed and m1 and m2 can be changed at any
time by inlet or outlet flow. However, since the system was designed with pressure
gauges that measure the pressures in the actuators chambers, we use the ideal gas
law, (3), to calculate m1 and m2. Hence, V can represent the potential energy of
the real actuator.

2.2. The Equation of Motion of the Actuator

Using the the kinetic energy (2) and the potential energy (9) of the actuator as
a function of the piston position and velocity, we can now write the Lagrangian (1)
as

L(x, ẋ) =
1

2
Mẋ2 −RT

(
m1 ln

(
A1x

V0

)
+m2 ln

(
A2 (l − x)

V0

))
. (10)

The Euler-Lagrange equation of motion for a non conservative system is

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= −∂F
∂ẋ

(11)
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where ∂F
∂ẋ is the partial derivative of the energy dissipation, F , with respect to the

velocity ẋ. The energy dissipation in the actuator is due to work done by the friction
force. Therefore, ∂F∂ẋ = Ff , where Ff is the friction force caused by the seals of the
piston and the rod. For simplicity we adopt the continuous linear model of viscous
friction. That is

Ff (ẋ) = µvẋ , (12)

where µv is the viscous friction coefficient. From experiment, µv is estimated to be
200 kg/s. Calculating the derivatives of (11), results in

Mẍ−RT
(
m1

x
− m2

l − x

)
= −µvẋ , (13)

which is the equation of motion of the actuator.

3. State Space Formulation

3.1. Single Integrator Form

The state space representation of (13) is

ẋ1 = x2 (14)

ẋ2 =
1

M

(
RT

(
m1

x1
− m2

l − x1

)
− µvx2

)
. (15)

We denote the first term on the right side of (15)

ζ = RT

(
m1

x1
− m2

l − x1

)
, (16)

which gives

ẋ1 = x2 (17)

ẋ2 =
1

M
(ζ − µvx2) . (18)

Notice that system (17)–(18) describes the dynamics of the actuator for fixed masses
of air in the actuator’s chambers, m1 and m2. Using the pneumatic valve, which is
connected to the actuator’s ports, we control the actuator by changing m1 and m2.
Thus, ζ is a function of the time dependent parameters x1 (t), m1 (t) and m2 (t). In
order to include the changes of the masses in the dynamic model, we differentiate
ζ with respect to the time,

dζ

dt
=

∂ζ

∂x1

dx1
dt

+
∂ζ

∂m1

dm1

dt
+

∂ζ

∂m2

dm2

dt
=

= RT

(
ṁ1

x1
− ṁ2

l − x1
− x2

(
m1

x21
+

m2

(l − x1)
2

))
, (19)

where ṁ1 and ṁ2 are the mass flow-rate of air entering and exiting the chambers
of the actuator. The mass flow-rate is the input to the actuator and is controlled
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by the input to the valve. In this paper, we use a linear model to describe the mass
flow-rate through the valve:

ṁ1 = α1uV + β1 (20)

ṁ2 = −α2uV + β2 , (21)

where α1, α2, β1 and β2 are all scalars and uV is the input voltage of the valve.
Choosing

uV =
1

α1

x1
+ α2

l−x1

(
−β1
x1

+
β2

l − x1
+ x2

(
m1

x21
+

m2

(l − x1)
2

)
+

u

RT

)
, (22)

and substituting equations (20)–(22) to (19) yields the three-equation system

ẋ1 = x2 (23)

ẋ2 =
1

M
(ζ − µvx2) (24)

ζ̇ = u (25)

where u is the control input.
The backstepping algorithm is designed to be applied on systems of the single

integrator form. We further seek to represent system (23)–(25) in the single inte-

grator form. To this end, we define the vector X = [x1, x2]
T

. Further, we define
functions f : D → R2 and g : D → R2 that are smooth in a domain D ∈ R2 which
contains X = 0 with f (0) = 0 and g (X) 6= 0. Choosing

f (X) =

[
x2
−µv

M x2

]
and g (X) =

[
0
1
M

]
(26)

transforms system (23)–(25) into the single integrator form

Ẋ = f (X) + g (X) ζ (27)

ζ̇ = u , (28)

where
[
XT , ζ

]T ∈ R3 is the state vector and u ∈ R is the control input.

3.2. Tracking Error

We aim to design a controller to drive the actuator and asymptotically track a boun-
ded reference position signal xd, which is assumed to be a continuous and differen-
tiable smooth signal. Thus, we define a new state vector [Xe, ζe]

T
= [xe1, xe2, ζe]

T
,

which represents the tracking error, such that

xe1 = x1 − xd (29)

xe2 = x2 − ẋd (30)

ζe = ζ − ζd , (31)

where ẋd is the time derivative of xd, and the ζ error ζd is defined by

ζd =
RT

M

(
m1

xd
− m2

l − xd

)
. (32)
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By differentiating (29)–(31) we get ẋe1 = ẋ1 − ẋd, ẋe2 = ẋ2 − ẍd, and ζ̇e = ζ̇ − ζ̇d.
We can now write

Ẋe = f (X) + g (X) ζ −
[
ẋd
ẍd

]
= =

[
x2 − ẋd
−µv

M x2 − ẍd

]
+

[
0
1
M

]
ζ . (33)

Since ẋ1 = x2 and assuming ẍd = 0, we get

Ẋe = f (Xe) + g (Xe) ζ.

Thus, replacing the state vector [X, ζ]
T

with [Xe, ζe]
T

in system (27)-(28) gives

Ẋe = f (Xe) + g (Xe) ζe (34)

ζ̇e = u . (35)

System (34)–(35) relaxes all the previous requirements, and for the input u = 0 the

system has an equilibrium point at [Xe, ζe]
T

= 0.

4. Position Control of the Actuator

In this chapter we derive the control law, using the backstepping algorithm.

Claim 1. Given system (34)-(35), where the state vector [Xe, ζe]
T

is defined by
(29)–(31), the state feedback control law

u = −2xe2 + k1

(µv
M
xe2 − ζe

)
− k2 (ζe + xe1 + k1xe2) , (36)

for positive definite k1 and k2, asymptotically stabilizes the system at the origin
[Xe, ζe]

T
= 0. That is, u forces the system to track the reference position trajectory

xd.

Proof. The backstepping procedure starts by considering (34). We wish to design
a state feedback control law ζ = ϕ (Xe) in order to asymptotically stabilize

Ẋe = f (Xe) + g (Xe)ϕ (37)

at the origin, Xe = 0 (ϕ (Xe) is denoted ϕ for brevity). For this purpose we use
the direct Lyapunov method, i.e., we look for a certain positive definite function
V (Xe). The derivative of V (Xe) along the trajectories of the subsystem (37) must
be negative definite. That is, V̇ must satisfy

V̇ =
∂V

∂Xe
(f (Xe) + g (Xe)ϕ) < 0

for Xe ∈ D , (38)

and
V̇ (0) = 0. (39)

Choosing a candidate Lyapunov function V (Xe) such that

V (Xe) =
1

2
XT
eXe (40)
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yields

V̇ (Xe) = xe1xe2 −
µv
M
x2e2 + xe2ϕ. (41)

If we further choose
ϕ = −xe1 − k1xe2, (42)

where k1 is a positive scalar, and then, substitute (42) into (41), we get

V̇ (Xe) = −x2e2
(µv
M

+ k1

)
. (43)

Considering (43), we notice that V̇ (Xe) is independent of xe1. Thus,

V̇ (Xe) ≤ 0

in Xe ∈ D and criterion (38) is not satisfied. Nevertheless, it is clear that V̇ (Xe)
is negative everywhere except on the line xe2 = 0 (i.e., V̇ (xe1, xe2 = 0) = 0). Re-
writing (37) after substitution from (26) and (42) yields

Ẋe =

[
xe2
−µv

M xe2

]
+

[
0
1
M

]
(−xe1 − k1xe2) .

We notice that the subsystem can maintain the state Ẋe = 0 only at the origin
Xe = 0. Therefore, by following LaSalle’s invariance principle, we conclude that
the origin is asymptotically stable. Adding and subtracting g (Xe)ϕ on the right-
hand side of (34), we obtain the equivalent representation:

Ẋe = (f (Xe) + g (Xe)ϕ) + g (Xe) (ζe − ϕ) (44)

ζ̇e = u. (45)

The change of variables
z = ζe − ϕ (46)

results in the system

Ẋe = (f (Xe) + g (Xe)ϕ) + g (Xe) z (47)

ż = u− ϕ̇, (48)

where

ϕ̇ =
∂ϕ

∂Xe
(f (Xe) + g (Xe) ζe) . (49)

Substituting (26) and (42) gives

ϕ̇ = −xe2 + k1

(µv
M
xe2 − ζe

)
. (50)

By taking ν = u− ϕ̇, we reduce the system (47)–(48) to

Ẋe = (f (Xe) + g (Xe)ϕ) + g (Xe) z (51)

ż = v , (52)
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which is similar to system (27)–(28), except that now the first component has an
asymptotically stable origin when the input is zero. In order to design v such
that it stabilizes the overall system, we consider the candidate Lyapunov function
Vo (Xe, z) such that

Vo (Xe, z) = V (Xe) +
1

2
z2. (53)

The derivative of Vo is then

V̇o =
∂V

∂Xe
Ẋe +

∂V

∂z
ż =

∂V

∂Xe
(f (Xe) + g (Xe)ϕ) +

∂V

∂Xe
g (Xe) z + zż. (54)

Replacing the first term on the right hand side and ż by V̇ (Xe) (see (38) and (52),
respectively), yields

V̇o = V̇ (Xe) +
∂V

∂Xe
g (Xe) z + zν.

Choosing ν such that

ν = − ∂V

∂Xe
g (Xe)− k2z , k2 > 0 , (55)

yields

V̇o = V̇ (Xe)− k2z2 ≤ 0. (56)

We have already shown that asymptotic stability at the origin of the subsystem
(37) is achieved using V̇ (Xe); thus, the origin (Xe = 0, z = 0) of system (51)-(52) is
asymptotically stable. Since ϕ (0) = 0 we conclude that the origin (Xe = 0, ζe = 0)
is also asymptotically stable. Substituting (26), (43), and (46) we have

ν = −xe2 − k2 (ζe + xe1 + k1xe2) . (57)

The state feedback control law is then

u = ϕ̇+ ν. (58)

Finally, by substituting (50) and (57) into (58) we obtain the exact control law
given in (36).

The resultant state feedback control law u is a function of the parameters xe1, xe2
and ζe, where µv and M are system constants. The control gains k1 and k2 should
be chosen such that the control law will remain within the saturation boundaries
of the valve’s input uV . Since the equilibrium point at the origin (Xe = 0, ζe = 0)
is asymptotically stable, u is guarantied to drive an asymptotic convergence of
the position error xe1 to the origin. In other words, the actuator’s position x1
converges to the desired reference position xd asymptotically and trajectory tracking
is achieved. However, considering the original actuator system (14)–(15), we notice
that there are two singular points at x1 = 0 and x1 = l. Therefore, according to
Lyapunov’s stability theory, only a local (i.e., 0 < x1 < l) asymptotic stability is
guaranteed.
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5. Simulations

5.1. The Potential Energy Behavior

The potential energy significantly affects the behavior of the system and its sta-
bility. In order to acquire some insight into the behavior of the potential energy
we performed simulations by solving numerically the potential energy equation (9)
for the whole range of the actuator piston stroke (0.001 < x < 0.299 m). The si-
mulation results in Fig. 5 indicate that the potential energy behaves as a positive
quadratic function with a global minimum, Vmin. This minimum is a stable equi-
librium point of (9). The horizontal location of Vmin for the given parameters is at
x = xmin = 0.1503 m (i.e. V (xmin) = Vmin). Other parameters in this simulation

were: the specific gas constant of air R = 287 J
kg K

, the temperature T = 298 K,

the masses of air in the chambers m1 = m2 = 5e−4 kg, the piston cross sections
A1 = 3.1e−3 and A2 = 2.8e−3 m2, and the dead volume V0 = 18e−6 m3. Notice that
choosing different masses m1 and m2 will affect the horizontal location of xmin.2

0 0.1 0.2 0.3
−280

−260

−240

−220

−200

−180

−160

x[m]

V
(x
)[
J
]

Figure 5 The potential energy of the actuator V as a function of the displacement x

5.2. Dynamic Model Analysis

To analyze the behavior of the dynamic model we first find the equilibrium point
x̄. Solving the equation of motion (13) for ẍ = ẋ = 0, results in

x̄ =
m1l

m1 +m2
. (59)

Substituting the masses m1 and m2 according to (3) and the volumes according to
(7) and (8), gives

x̄ =
P1A1xl

P1A1x+ P2A2 (l − x)
(60)

where x is the current position of the piston defining the mass volume. With
this volume and the pressure, letting go of the piston will lead the piston to the

2The specific vertical location of Vmin is a result of the chosen conditions. Generally, the potential
energy, V, is defined as a scalar quantity that depends on absolute physical quantities, such as
the temperature, the mass, and the specific gas constant. Since these physical quantities are
historically (or arbitrarily) pre-scaled according to international standards, and since energy is
defined as a positive quantity with its theoretical minimum at zero, the vertical location of Vmin

is not significant and can be shifted to any desired location on the vertical axis.
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equilibrium point x̄. For example, assigning values P1 = 1.37 bar, P2 = 0.76 bar,
x = 0.1 m, A1 = 3.1e−3 m2, A2 = 2.8e−3 m2 and l = 0.3 m, results in an equilibrium
point which is located at x̄ = 0.15 m.

Next, we plot in Fig. 6 the phase portrait for the initial state x = 0.1m and
ẋ = 1m/s. The phase portrait is an illustration of the solution of (13), in which
we plot the velocity ẋ versus the position x. The required parameters are set
to the values for the equilibrium point example above. For reference behavior,
we added another phase portrait plot, of a frictionless actuator. Examining the
results for the frictionless actuator, represented by the solid line, we notice that
the image of a periodic solution in the phase portrait is a closed trajectory, which
is usually called a periodic orbit or a closed orbit. The equilibrium, however, is
not asymptotically stable, since trajectories starting near the equilibrium point do
not converge on it [15]. This periodic orbit is a result of a constant energy level
which does not dissipate, since there is no friction. When friction is taken into
consideration (the dashed line), trajectories starting close to the equilibrium point
converge to it as time tends to infinity. Therefore we conclude that (x̄, ˙̄x) = (0.15, 0)
is an asymptotically stable equilibrium point of the actuator. Finally, verification

0 0.1 0.2 0.3

−2

0

2

x[m]

ẋ
[m

/
s
]

 

 

No Friction

With Friction

Figure 6 The phase portrait of the actuator, with and without friction

of the derived equation of motion (13) is obtained by comparing it to the standard
equation of motion, as derived from Newton’s second law. By replacing the term

−RT
(
m1

x −
m2

l−x

)
according to (3), we get the standard equation of motion familiar

from conventional studies

Mẍ− P1A1 + P2A2 = −µvẋ .

6. Experiments

6.1. Test Setup

The dynamic model and control law were validated on a designated test setup,
which is seen in Fig. 7. The test setup comprises a double-sided, single-ended
piston rod type pneumatic actuator. In our experiments we used the BACCARA
GEVA S3000 actuator with a cylinder bore diameter of 0.063m, a 0.02m diameter
rod and a 0.3m stroke. The actuator is pneumatically connected, by two tubes, to
a 5/3 proportional directional control valve of the Festo MPYE series. The valve
controls the flow in and out of the actuator. The valve is controlled by an analog
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signal of 0-10V, and is also connected to a pneumatic source providing a clean
and dry supply of air at a semi-steady pressure of 500 ÷ 700kPa. A Celesco SP1
potentiometer measures the position of the rod, and two SMC ISE30 series pressure
gauges measure the pressure on both sides of the actuator. An 8-bit micro-controller
(ARDUINO UNO) acquires data from the sensors at a sampling frequency of 1kHz.
The control input signal is calculated and sent to the valve at a frequency of 0.1kHz,
which is the bandwidth of the valve. An external mass (weights) is mounted on
a linear slide rail. The total mass of the piston, the rod and the weights is 7.5kg.
The slide rail is connected to a guided spring, which exerts a varying external force
on the actuator.

Figure 7 Image of the test setup: the actuator is connected to a slider on a rail. The external
mass is mounted on the slider, which is connected to a guided spring. The spring is fixed on the
right side

6.2. Dynamic Model Validation

We validated the dynamic model by comparing the simulation and experimental
results for the actuator. The experiment was configured such that the actuator is not
subjected to any external force (the spring was taken off) and was moved from side to
side with a total displacement of 0.2m; the velocity increased in accordance with the
valve input. Figure 8 displays the actuator position (top), the valve input (middle)
and the error of the model (bottom). At an input voltage of 5V the valve blocks
the flow. As the input increases/decreases from this value, the flow-rate increases
and, hence, the actuator opens/closes more quickly. The pressure and position
measured during the experiment are used for calculating the mass of air inside
the actuator’s chambers. The simulation only relates to the actuator dynamics and
does not includes the air mass flow rate dynamics. Thus, the simulation input is the
air masses and the output is the actuator’s position. According to the simulation
result, the root mean square error (RMSE) of the position is 0.002m in the model
and the maximum error is ±0.004m.

6.3. Tracking Performance

To test the controller performance, we conducted two experiments. In one, the
position trajectory was a square wave and in the other, it was a sinusoidal wave.
The objective of the experiment was to test the controller accuracy under a disturb-
ing force. The accuracy is measured by the tracking error, which is the difference
between the position measured in the experiment and the position reference. A dis-
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Figure 8 Model validation: actuators position trajectory recorded in the experiment (top), valve
input (middle) and model error (bottom)

turbance of an unknown varying external force is applied by the integration of a
spring into the test setup. The magnitude of the generated force was varied as
a function of the opening of the actuator. Since the opening is a function of time,
the force is also time varying. The force was not modeled, i.e., it has no represen-
tation in the dynamic model and was not directly measured, although it affects the
pressure inside the actuator’s chambers.

Calculation of all the parameters in the control law (36) was performed as fol-
lows. The position error xe1 was calculated by (29), where the real position x1 was
measured in real time. The desired position xd is a system input signal which, in
our system, is bounded such that 0.05 ≤ xd ≤ 0.25m.3

The velocity error xe2 was calculated by (30), where x2 is the time derivative of
x1, which was calculated by a first order numerical derivative and filtered by first or-
der FIR filter. ẋd is the time derivative of the desired position xd. ζe was calculated
from (31), which requires the real time data of the air mass m1 and m2 and the real

3A typical design of large pneumatic actuators includes a stroke cushioning on both ends of the
actuator’s cylindrical cover. This cushioning is designated to bring the piston and the mass to
a smooth gentle halt against the end cover of the cylinder [16]. That is, the actuator dynamics
change when the piston enters the cushioning band. In order to avoid the cushioning disturbance
to the motion of the actuator’s piston, the cushioning band in the tested actuator is taken to be
0.05m on both sides. This band is longer than the actual designed cushion band, but it guarantees
that xd remains inside the cushion free stroke.
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time air mass flow rate ṁ1 and ṁ2. The masses m1 and m2 were calculated by the
ideal gas law (3), with real time measurements of the pressures, P1 and P2, respec-
tively, while the volumes V1 and V2 were calculated using the measured position x1.
The mass flow rates of air ṁ1 and ṁ2 were calculated from (20) and (21), respec-
tively. The corresponding mass flow rate parameters α1 = −α2 = −0.004736kg/s V
and β1 = β2 = 0.0005kg/s were found experimentally. The controller gains were set
in the simulation such that the input cannot exceed the valve’s input limitations,
and fine tuned experimentally thereafter. In our experiments we set k1 = k2 = 5.
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Figure 9 Square wave tracking test: reference signal and measured position (top), tracking error
(middle) and valve input (bottom)

The test results from tracking a square wave trajectory are shown in Fig. 9. The
trajectory of the reference signal, with an amplitude of 0.08m, and the actuator
recorded position are shown in the top trace. The faster response in the closing
direction is in agreement with the increase in the magnitude of the force. The
tracking error and the valve input are shown in the middle and the bottom traces,
respectively. Due to a significant asymmetry in the error behavior we mention two
error values: the upper step RMSE is 0.02m and the lower step RMSE is 0.016m.
Although the steady state error of the lower step is considerably larger than for the
upper step, the upper RMSE is greater. This is a consequence of the increasing
resistance of the spring in the upper step, while in the lower step the force acts
in the direction of the movement. Inspection of the corresponding input reveals
that, although appropriate input is received, the steady state error is reduced very
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slowly. We conclude that this behavior is due to poor operation of the valve in the
neighborhood of 5V.
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Figure 10 Sinusoidal wave tracking test: reference signal and measured position trajectories (top),
tracking error (middle) and estimated external force (bottom)

The test results from tracking the sinusoidal wave are shown in Fig. 10. The
trajectory of the reference signal, with an amplitude of 0.1 m, and the actuator
recorded position are shown on the top. The tracking error, shown on the middle,
is within ±0.008 m and the RMSE is 0.004 m. In contrast to the square wave test,
the external force and its varying magnitude are hardly noticed. The bottom trace
shows the estimation of the external force in this experiment. The magnitude of the
external force, which varies from 570 N to about 1150 N, constitutes a significant
disturbance to the actuator, considering it can produce a maximum force of about
1600 N in the given configuration.

7. Conclusions

This paper presents a novel position control law for a pneumatic actuation system,
which continues to perform accurately when subjected to a disturbance due to an
external force. A new modeling approach was used to derive the dynamic model
of the actuator. Based on energy principles, the Lagrangian of the actuator was
introduced as a preliminary step towards the derivation of the equation of motion.
Simulation of the dynamic model showed good correspondence with experimental
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results. The nonlinear backstepping method was applied in order to design a sta-
bilizing state feedback control law. Tracking is achieved by introducing the error
vector, which includes the zeta error, as the state vector. The advantage of this
control law is that, even though the actuator is disturbed by a time varying exter-
nal force, the tracking performance is not affected. In future work, we will focus on
the bounds for the dynamic model and disturbance uncertainty. Further, we will
consider the development of a method to automatically calculate optimal k1 and k2
gains and also will extend the simulation to include the air mass flow rate model.
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